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NOTE

On a Mistaken Notion of “Proper Upwinding”

In computational fluid dynamics the Riemann problem, an initial value problem with
piecewise constant initial data having only one discontinuity, plays a special role. An exact
or an approximate solution to this problem, whose relevance for numerical computations
was originally suggested in [3], is used in many modern codes for hyperbolic conservation
laws to find the fluxes of conserved quantities, such as mass, momentum, and energy,
across the interfaces of computational cells. Deriving the flux in such a way allows many
properties of the governing equations to be directly built into the numerical method, in
particular properties having to do with the directionality of wave propagation. For example,
if all information propagates through an interface in only one direction, then one would
want to evaluate the interface flux based only on the upstream state, so that the flux is wholly
upwind. How can such a case be detected? One situation appears to be obvious. Suppose
both initial states in a Riemann problem are supersonic in the same direction. Then, with
all the information initially propagating in this direction, it seems natural to assume that it
will continue to propagate in one direction even after the two states interact. In fact, this
is exactly what many numerical schemes will do. In particular, it is done by any code that
determines the domain of influence before solving the Riemann problem. Some writers even
take this property to be a necessary condition for a flux function to be “properly upwind.”
In this note we want to point out that this notion of “proper upwinding” is erroneous.

From the theory of hyperbolic conservation laws it is well known (see, for example, [4])
that the speed of an entropy-satisfying “convex” wave lies in the range determined by the
characteristics of an appropriate family immediately to the left and to the right of the wave.
In the scalar case, which admits waves of only one family, this means that in a Riemann
problem the characteristics computed from the initial dataa priori determine the domain of
influence to which the resulting wave will be confined. Thus, if the characteristics on both
sides of the initial discontinuity are in the same direction, the interface flux can always be
upwinded. This result is so natural that it is tempting to extend it to the non-scalar case as
in Fig. 1. However, unless the initial states in a Riemann problem can be connected by a
single wave, they are not neighboring states fort > 0. The possibility is therefore open that
the domain of influence of the initial discontinuity extends outside the union of the domains
of dependence defined by the two initial states (see Fig. 1).

That this can indeed happen is easy to demonstrate for gas dynamics. Consider the
following Riemann problem. Let the initial left stateL be supersonic in the positive direction
(see Fig. 2). From theu − p diagram (see [1]) it is clear that for any such left state we can
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FIG. 1. Is the domain of influence in a Riemann problem bounded by the characteristics of the initial states?
Not necessarily.

always find a right stateR, also with positive velocity, whose pressure is high enough to
produce a left going contact discontinuity. We can ensure that the stateR is also supersonic
simply by making it sufficiently dense. Then by construction the contact discontinuity is
left-running, anda fortiori the (u − a) wave also. For example, it is easy to check that
for γ = 1.4, uR = uL , aR = aL , MR = ML = 1.1, andpR = 100pL the resulting velocity
of the contact discontinuity isuI ≈ −0.52aL , whereγ is the polytropic constant,u is the
velocity,a is the sound speed,M is the Mach number, andp is the pressure of the gas.

Thus we see that so-called “proper upwinding” is not a feature of the exact Riemann
solution and therefore cannot be a necessary feature of an approximate one. Nevertheless,
many authors have assumed that it should be. Vinokur [6] noted that Roe’s scheme [5] could
predict eigenvalues outside the range spanned by the initial data and assumed this to be a
defect of the scheme. This criticism was accepted in [2]. However, a careful analysis of the
first two cases treated in the Appendix of [6] reveals that their exact solutions feature weak
left-running shocks. Thus Roe’s scheme in these cases approximates the correct physical
behavior. Honesty, however, compels the second author to admit that this feature was a
matter of serendipity rather than conscious design.

A practical motivation for accepting the upwind flux under some circumstances is that it
could speed up the calculations, and we now derive a sufficient condition. Let both the left
and the right states in a Riemann problem be supersonic in the positive direction. Obviously,
upwinding will be possible if no left-going shock wave appears. Note that this allows an
expansion wave or a right-going shock wave bounding the left state. Since the expansion
wave case always results in upwinding, we will concentrate on the shock wave case. If the
left state undergoes a shock wave transition, the velocity of the resulting shock wave is

FIG. 2. A Riemann problem in which the direction of the intermediate state velocity is opposite to the velocities
of the initial supersonic states.
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given by

vs = uL − aL

√
1 + γ + 1

2γ

(
p∗
pL

− 1

)
, (1)

wherep∗ is the pressure of the adjacent intermediate state (see [1] for this and other formulae
used below). The shock velocity is positive if
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)
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Then the corresponding intermediate state velocity,u∗, given by

u∗ = uL − aL

γ
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(3)
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The intermediate velocity can alternatively be expressed in terms of the right state para-
meters. The right state may undergo either an expansion or a shock wave transition. In the
first case
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while in the second one
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. (6)

We could check whether the right state shocks or expands, however, it can be shown that
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for all meaningful values ofγ . Therefore a lower bound on the intermediate velocity can
always be found using the expansion curve. This simplification makes physical sense since
the right state, whose pressure must be high to produce a left-running shock wave, is most
likely to expand.

Using Eqs. (2), (4), and (5) we can find that

(γ − 1)M2
L + 2

(γ + 1)ML
<

uR

aL
+ 2

γ − 1

aR

aL

((
p∗
pL

) γ−1
2γ
(

pL

pR

) γ−1
2γ

− 1

)
(8)

<
uR

aL
+ 2

γ − 1

aR

aL

((
pL

pR

) γ−1
2γ
(

1 + 2γ

γ + 1

(
M2

L − 1
)) γ−1

2γ

− 1

)
. (9)



                

614 LINDE AND ROE

Combined withuL > aL anduR > aR the above condition yields the following sufficient
criterion for upwinding in the positive direction,
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(10)

A similar expression can be easily obtained for upwinding in the negative direction when
uL < −aL anduR < −aR. However, Eq. (10) is fairly complicated and expensive to compute,
therefore it is not clear if the obtained criterion is useful for practical calculations.

Our objective in writing this note is chiefly to correct a theoretical misconception. In
order to see whether the misconception has serious practical consequences for unsteady
calculations we have constructed various data with two supersonic initial states that should
generate a left-going shock. Numerical results were then obtained using several flux func-
tions. One might think that “properly upwinded” fluxes would be unable to initially predict
the correct flow. Indeed, at the first timestep, no left-going disturbance can be generated.
At later timesteps, however, Riemann problems are solved involving “intermediate” states,
and in all cases the correct wave pattern emerges quite soon; not a surprising result for a
convergent scheme. Thus, in unsteady calculations no serious problems occur. In steady-
state calculations, however, the situation may potentially be different. It is likely that an
optimized implementation of a particular flux function utilizes “proper upwinding” which
involves a simple logical switch. Because of this switch, some flux functions, in particular
Roe’s flux function, lose Lipshitz continuity, which in turn may interfere with convergence.
We are not currently aware whether such an effect has ever been observed. Nevertheless,
we have shown that the notion of “proper upwinding” as sometimes proposed is in fact
mistaken. It is apparently just good fortune if it causes no harm.
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